On Regular and Singular Estimation for Ergodic Diffusion

نویسندگان

  • Yury A. Kutoyants
  • YURY A. KUTOYANTS
چکیده

The asymptotic properties of the maximum likelihood and bayesian estimators of finite dimensional parameters of any statistical model depend strongly on the regularity conditions. It is well-known that if these conditions are fulfilled then the estimators are consistent, asymptotically normal and asymptotically efficient. These regularity conditions are of the following type: the model is sufficiently smooth w.r.t. the unknown parameter, the Fisher information is a positive continuous function, the model is correct and identifiable and the unknown parameter is an interior point of the parameter set. In this work we present a review of the properties of these estimators in the situations when these regularity conditions are not fulfilled. The presented results allow us to better understand the role of regularity conditions. As the model of observations we consider the one-dimensional ergodic diffusion process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-parametric estimation of the coefficients of ergodic diffusion processes based on high-frequency data

The content of this chapter is directly inspired by Comte, Genon-Catalot, and Rozenholc (2006; 2007). We consider non-parametric estimation of the drift and diffusion coefficients of a one-dimensional diffusion process. The main assumption on the diffusion model is that it is ergodic and geometrically mixing. The sample path is assumed to be discretely observed with a small regular sampling int...

متن کامل

Application of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel

In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The  Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Estimation for Misspecified Ergodic Diffusion Processes from Discrete Observations

Abstract. The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the cont...

متن کامل

Moment estimation for ergodic diffusion processes

We investigate the moment estimation for an ergodic diffusion process with unknown trend coefficient. We consider nonparametric and parametric estimation. In each case, we present a lower bound for the risk and then construct an asymptotically efficient estimator of the moment type functional or of a parameter which has a one-to-one correspondence to such a functional. Next, we clarify a higher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008